If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4(t^2-6))/((t^2+6)^2)=0
Domain of the equation: ((t^2+6)^2)!=0We multiply all the terms by the denominator
t∈R
(4(t^2-6))=0
We calculate terms in parentheses: +(4(t^2-6)), so:We get rid of parentheses
4(t^2-6)
We multiply parentheses
4t^2-24
Back to the equation:
+(4t^2-24)
4t^2-24=0
a = 4; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·4·(-24)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*4}=\frac{0-8\sqrt{6}}{8} =-\frac{8\sqrt{6}}{8} =-\sqrt{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*4}=\frac{0+8\sqrt{6}}{8} =\frac{8\sqrt{6}}{8} =\sqrt{6} $
| 6(y-9)=-48 | | (3a+10)=90 | | –4t−10=–5t | | 15.9=w/8-3.1 | | 8x+20=-2x+5 | | 9x•68=180 | | 3(x-2)=2(x-3)+ | | -4x-8=-7x-13 | | 8−4f=–2f | | 5x-9x-14=4x+3-14 | | -39=9-8y | | x^2=-420 | | 5x=4x+60 | | 8|-4x-2|=80 | | w/7-5=-6 | | (2x-5)(x-4)=12 | | 6(u)+39=-7(u) | | 800-x=x^2+380 | | -25=-5(u+9) | | x2-6x=-1 | | -5x+5x=08x=16+08x=16 | | (2b-18)=90 | | (4a+58)=90 | | 2+5x=8-3x | | 100/67=16/x | | x-0.2=0,8 | | 64/100=x/16 | | 67/100=x/8 | | 67/100=x/16 | | (t-2)(t-4)+8=0 | | 1/2(3x-5)=2/3(x-1) | | 15r=45/7 |